Name:

BA360 Spring 2019 Practice Final Exam

Section A. Use the data in this shared **Sheets** file to complete questions 1-3:

1. Time Series Data Analysis

- a. Produce a Line plot to visualize change over time.
- b. Customize your chart and fit a trend line to the data.
- c. Choose the best polynomial fit for the data.
- d. Display the equation and R²
- e. Write the equation and the R² value in the space below.

y-hat equation: _____

R²:

- 2. Time Series Forecasting
 - a. Use the equation from problem 1 above to forecast the next three (3) time periods in the series: Jan, Feb and Mar 2019.
 - b. Write the three forecast amounts, rounding to the nearest one-thousandth (3 digits) in the spaces below.

Forecasts by time period 1. _____ 2. ____ 3. _____

3. Forecast Error Measurement

- a. Three months have passed and you now know the months of supply to be **6.7** for time period 1, **6.3** for time period 2 and **6.0** for time period 3.
- b. Using the assumptions above in a., calculate MAD and RMSE.
- c. Write MAD and RMSE in the space below.

MAD: ______ RMSE: _____

Section B. Use the data in this shared **Sheets** file to complete questions 4-5.

4. Regression Analysis - Initial Model Run

- a. Use "Selling Price" as the dependent (y) variable.
- b. Use "Beds", "Baths" and "Total SqFt" as the independent (x) variables.
- c. Build an initial regression model and report output in the spaces below.

y-hat equation:			R ² :
where x1=Beds , x2=Baths , x3	=Total SqFt		
Most significant t-statistic:	and corresponding	g variable name:	
Least significant t-statistic:	and corresponding	g variable name:	
F-Statistic:	Significance of F:	n=	

5. Regression Analysis - Improved Model

- a. Improve the model by replacing "Beds" and "Baths" with an interaction variable.
- b. Rerun and report the regression output figures in the spaces below.

y-hat equation:		R ² :
where x1=	, x2=Total SqFt	
Most significant t-statistic:	and corresponding variable name:	
Least significant t-statistic:	and corresponding variable name:	
F-Statistic:	Significance of F: n=	<u></u>

Section C. Use the data in this shared **Sheets** file to complete questions 6-7.

6. Stock Market Simulation - revise for lower rates of return

- a. You are a financial analyst for wealth management firm, Dewey, Cheatham & Howe LLP.
- b. You've been asked to modify the stock market simulation to provide more conservative estimates for portfolio growth, assuming an initial balance of \$10,000, but with a lower mean return rate of 8.0% with standard deviation of 6.0%.
- c. Run the simulation with these new figures and generate ending balances for five (5) simulations.
- d. Calculate the mean and standard deviation of the five (5) ending balances and enter the results in the spaces below. Round to the nearest hundredth (2 digits).

Mean ending balance: ______ Standard deviation: _____

7. Stock Market Simulation - add an annual deposit

- a. One of the *Dewey, Cheatham* & *Howe LLP clients* has asked how much more money she'd have at retirement if she deposited an additional \$1,000 to her balance each year.
- b. Change the worksheet to facilitate the \$1,000 annual deposit and generate five (5) additional simulations.
- c. Calculate the mean and standard deviation of the five (5) ending balances and enter the results in the spaces below. Round to the nearest hundredth (2 digits).
- d. Write the formula(e) used to facilitate the annual deposit in the space below.

Mean ending balance: ______ Standard deviation: _____

Formula(e): ______