> Makenna Linn
7.) Regression
2.) $r=107786-\frac{(772)(1279)}{10}$

$$
=\frac{9048}{\sqrt{(4011 .)(22952.9)}}=\begin{aligned}
& 0.9429 \\
& \text { strong pos.correlation }
\end{aligned}
$$

3.) $y=b_{6}+b_{1} x$

$$
\begin{aligned}
& b_{1}=\frac{107786-\frac{(772)(1279)}{10}}{63610-\frac{(772)^{2}}{10}}=\frac{9047.2}{4011.6}=2.25 \\
& b_{0}=\frac{1279}{10}-(2.25 .)\left(\frac{772}{10}\right)=-45.8
\end{aligned} \quad y=-45.8+2.25 x
$$

4.) $\frac{\hat{y}}{185.95} \frac{y-\hat{y}}{33.05} \frac{(y-\hat{y})^{2}}{1092.3} \quad r^{2}=1-\frac{2549.21}{\left(186537-\frac{1279)^{2}}{10}\right)}=0.89$

$$
\begin{array}{lll}
41.95 & 14.05 & 197.4
\end{array}
$$

$$
127.45 \quad-20.45 \quad-418.2
$$

$$
\begin{array}{lll}
129.7 & -0.7 & 0.49
\end{array}
$$

$$
\begin{array}{lll}
66.7 & 1.3 & 1.69
\end{array}
$$

$$
\begin{array}{lll}
170.2 & 13.8 & 190.44
\end{array}
$$

$$
\begin{array}{lll}
156.7 & -6.7 & 44.89
\end{array}
$$

$$
122.95-10.95 \quad 119.9
$$

$$
\begin{array}{lll}
100.45 & -1.45 & 2.1
\end{array}
$$

$$
176.95 \frac{-21.95}{\Sigma=0.0} \frac{481.8}{\sum 2549.21}
$$

5.) $x=40$

$$
x=60 \quad x=80
$$

$$
-45.8+2.25(40)=44.2 \quad 89.2 \quad 134.2
$$

6.)

$$
\begin{array}{ll}
C E=95 \% & t=.025,8 \rightarrow 2.306 \\
\alpha=0.05 \quad & 44.2 \pm(2.306)(17.85) \sqrt{\frac{1}{10}+\frac{(40-77.2)^{2}}{(4011.6)}}= \\
& 44.2 \pm(2.306)(17.85)(0.6671) \\
x=40 & 44.2 \pm 27.46 \\
\bar{x}=77.2 & 16.74<y<71.66 \\
S_{e}=17.85
\end{array}
$$

$$
\begin{array}{r}
x=80 \quad 134.2 \pm(2.306)(17.85) \sqrt{\frac{1}{10+(80-77.2)^{2}}} 4011.6
\end{array} \begin{array}{r}
134.2 \pm(2.306)(17.85)(0.3193) \\
134.2 \pm 13.14 \\
121.06<y<147.34
\end{array}
$$

8.)

$$
\begin{array}{ll}
H_{0}: \beta_{1}=0 & \alpha=0.05 \\
H_{a}: \beta_{1} \neq 0 & b_{1}=2.25 \\
& s_{c}=17.85 \\
& \sum_{x}=772 \\
\sum^{2}=63610
\end{array} \quad t=\frac{2.25-0}{\sqrt{4011.6}}= \pm 7.98
$$

Reject Hypothesis
9.) $t^{2}=(7.98)^{2}=63.68$
10.) The model is very accurate. The model would be very useful if you wanted to predict water use at $20^{\circ}-120^{\circ}$. There is a very strong positive correlation and y (watieruse) is very sensitive to x (temperature).
3.
$5_{x y}=\Sigma_{x y}-\frac{(\Sigma x)\left(\Sigma_{y}\right)}{n}=107786-\frac{(772)(1279)}{10}=9047.2$
$S_{5 x x}=\Sigma_{x^{2}}-\frac{(\Sigma x)^{2}}{n}=63610-\frac{(772)^{2}}{10}=4011.6$
$b_{1}=\frac{s_{x y y}}{s s_{x x}}=\frac{9047.2}{4011.6}=2.255$
$b_{0}=\frac{\Sigma y}{n}-b_{1} \frac{(\Sigma x)}{n}=\frac{1279}{10}-(2.255)\left(\frac{772}{10}\right)=-46.186$

$$
\begin{aligned}
& \text { 4. } \\
& \quad \begin{aligned}
\text { SSE } & =\Sigma_{y^{2}}-b_{0} \Sigma y-b_{1} \Sigma x y \\
& =186537-(-46.186)(1279)-(2.255)(107786) \\
& =2551.46
\end{aligned}
\end{aligned}
$$

5. $x=40,60,80$

$$
\begin{align*}
\hat{y} & =-46.186+2.255(40)=\frac{44.014}{} \\
& =-46.186+2.255(60)=89.114 \\
& =-46.186+2.255(80)=134.214 \tag{6.}
\end{align*}
$$

$\hat{y} \pm t_{\alpha / 2, n-2} S_{e} \sqrt{\frac{1}{n}+\frac{\left(x_{0}-\bar{x}\right)^{2}}{S 5 x x}} \quad S_{e}=\sqrt{\frac{S S \varepsilon}{n-2}}=\sqrt{\frac{2551.46}{10-2}}=17.8587$
$44.014 \pm(2.306)(17.8587) \sqrt{\frac{1}{10}+\frac{(40-77.2)^{2}}{4011.6}}=(16.5433,71.4847) \quad \bar{x}=77.2$
$89.114 \pm(2.306)(17.8587) \sqrt{\frac{1}{10}+\frac{(60-77.2)^{2}}{4011.6}}=(71.9481,106.28)$
$134.214 \pm(2.306)(17.8587) \sqrt{\frac{1}{10}+\frac{(88-77.2)^{2}}{4011.6}}=(121.064,147.364)$
7. On graph.
8.

9.

$$
F=z^{2}=(7.94)^{z}=63.8401
$$

10.

The model is untibely accume at 88.8%. It would not be very useful if you wasted a more aumule pudictionfor those value because they are fou off from the data.

