Exam 4, Feb 13, 2014


Open book. Show All Work!
A liquor store wants to investigate the relationship between beer sales and bourbon sales. The manager has collected the following data.

| Week | Beer $(x)$ | Bourbon (y) | $x^{2}$ | $y^{2}$ | $x y$ | $y$ | $(y-\hat{y})$ | $(y-\hat{y})^{2}$ |
| ---: | ---: | ---: | :--- | :--- | :--- | :--- | :--- | :--- |
| 1 | 1149 | 89 | 1320201 | 7921 | 102261 | 79.13 | 9.86 | 97.32 |
| 2 | 971 | 81 | 942841 | 6561 | 78651 | 79.49 | 1.51 | 2.29 |
| 3 | 989 | 84 | 978121 | 7056 | 83076 | 79.45 | 4.55 | 20.69 |
| 4 | 966 | 71 | 933156 | 5041 | 68586 | 79.50 | -8.50 | 72.20 |
| 5 | 1172 | 73 | 1373584 | 5329 | 85556 | 79.09 | -6.09 | 37.08 |
| 6 | 1261 | 70 | 1590121 | 4900 | 88270 | 78.91 | -8.91 | 79.44 |
| 7 | 1288 | 72 | 1658944 | 5184 | 92736 | 78.86 | -6.86 | 47.06 |
| 8 | 1199 | 79 | 1437601 | 6241 | 94721 | 79.04 | -0.04 | 0.0012 |
| 9 | 1366 | 74 | 1865956 | 5476 | 101084 | 78.70 | -4.70 | 22.14 |
| 10 | 1271 | 84 | 1615441 | 7056 | 106764 | 78.89 | 5.11 | 26.08 |
| 11 | 1346 | 88 | 1811716 | 7744 | 118448 | 78.74 | 9.25 | 85.66 |
| 12 | 1172 | 84 | 1373584 | 7056 | 98448 | 79.09 | -49.10 | 24.11 |
| 14150 | 949 | 16901266 | 75565 | 118601 | 948.9 | 097 | 514.07 |  |

2. Calculate the Pearson Correlation Coefficient. $r=-.0406$
3. Determine the equation of the regression line. $\hat{y}=81.41+-0.00198 x$
4. Based on the regression line, calculate predicted Bourbon sales and residuals.
5. Calculate the sum of squares error and the standard error of the estimate. $S S E=514.07 \quad 5 e=7.17$
6. Calculate the coefficient of determination. $r^{2}=0.0016$
7. Assume the liquor store manager has never taken a course in statistics. How would you describe the relationship between beer sales and bourbon sales?


2) 

$$
\begin{aligned}
& 1118601-\frac{(14150)(949)}{12} \\
& \sqrt{\left(16901266-\frac{(14150)^{2}}{12}\right)\left(75565-\frac{(949)^{2}}{12}\right)}=\frac{-428.166}{10547.62}
\end{aligned}
$$

3) 

$$
\begin{aligned}
& s s_{x y}=1118601-\frac{(14150)(949)}{12}=-428.167 \\
& s_{x x}=16901266-\frac{(14150)^{2}}{12}=216057.667 \\
& b_{1}=-.00198 \quad b_{1}=\frac{s s_{x x}}{s s_{x x}}=\frac{-428.167}{216057.667} \\
& b_{0}=\frac{949}{12}-(-.00198) \frac{14150}{12}=79.08-(-2.33) \\
& b_{0}=81.41
\end{aligned}
$$

5) $S S E=514.07$

$$
S_{e}=\sqrt{\frac{514.07}{12-2}}=S_{e}=7.17
$$

6) 

$$
\begin{aligned}
& r^{2}=1-\frac{S S E}{S S_{y y}^{\prime}} \quad S S_{y y}=75565-\frac{(949)^{2}}{12}=\begin{array}{l}
514.91 \\
\\
r^{2}=1-\frac{514.07}{514.91}
\end{array} \quad r^{2}=.0016
\end{aligned}
$$

